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ABSTRACT

Elastodynamic stress intensity factors generated by the interaction of
wave motions with a crack are analyzed. It is shown that in an
asymptotic approximation, which is valid for itigh frequencies, the stress
intensity factors at the edge of a crack are related to the fields of
incident rays by a matrix of stress intensity factor coefficients, which
can be computed from canonical solutions. The canonical solutions are
provided by the fields describing diffraction by a semi-infinite crack
of plane body waves and plane surface waves, which are incident under an
arbitrary angle with the edge of the crack. Several applications of the
theory are presented. For cracks of finite length, the contributions due
to the travelling back and forth of rays between the two crack tips is
taken into account in a simple manner, to yield results which are in

excellent agreement with numerical results obtained by other authors.
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1. Introduction

A crack in a solid body gives rise to singular stresses at the edge of
the crack. 1In a local coordinate system, with the origin on the edge of
the crack, a representative stress component near the edge, say Ty may be
expressed in the form

T @) = @7 R T (0) (1

Here r and g are polar coordinates in the plane normal to the edge. The
geometrical features of the crack geometry, as well as the parameters
describing material properties and loads, enter in the stress intensity
factor KI. For dynamic problems KI also depends on the time t and the
circular frequency w.

There is much interest in stress intensity factors, because they are
relevant to fracture mechanics considerations. Here we are interested in elasto-
dynamic stress intensity factors generated by the interaction of wave motions
with a crack. We present some general results which are valid for high fre-
quencies under time-harmonic excitations, or for small times after the arrival
of wave fronts under impact loads.

Ray theory provides a very useful method to analyze both the propagation
of high frequency waves and the propagation of surfaces of discontinuity,
see e.g. Refs.[17 - M37. The general ideas of ray theory were extended by
Keller [47 to analyze the far field in diffraction problems. In the present
paper a ray theory for stress intensity factors is established. The theory
states that in an asymptotic approximation.the stress intensity factors at
a point on the edge of a crack are related to the field of the incident wave
at this point by a matrix of stress intensity factor coefficients, which

depends only on the direction of incidence, the frequency, and the local
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physical properties of the solid at the point of incidence. The incident
wave may be a body wave as well as a surface wave. The matrix is independent
of the curvature of both the wavefront of the incident wave and the edge of
the crack, provided that these curvatures are of smaller orders in magnitude
than the wavenumbers.

In Section 2, an edge region analysis is presented for incident body
waves. Details are worked out for an incident ray of longitudinal motion.
By matching a boundary layer solution of the diffracted field in the vicinity
of the edge to the outer solution (the geometrical optics field), it is shown
that the stress intensity factors generated by the incident field are related
in a simple manner to the stress intensity factors for a plane longitudinal
wave incident upon a semi-infinite stress-free crack. The modifications
required to treat incident rays of transverse motion are obvious, and they

are not discussed in detail.

For incident body waves the construction of the matrix of stress intensity

factor coefficients is discussed in Section 3. The coefficients are listed
in Appendix A. 1In Section 4 the theory is extended to elastodynamic stress
intensity factors generated by surface waves which are incident on the edge
via the faces of the crack.

In the last section several applications of the theory are presented,
and the results are compared with those obtained by other authors.

2. Edge Region Analysis

In this section a formal proof of the theory for incident body waves
is presented by a method motivated by the work of Buchal and Keller [57.
An inner solution is constructed which is asymptotically valid in a region

near the edge. The leading term of this solution is then matched to the

leading term of the outer solution, which is the geometrical optics part of

the diffracted field.
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Essential to the development of this section is the '"geometrical

optics" part of the diffracted field, for the case that a plane longitudinal
wave is diffracted by a semi-infinite crack, whose surfaces are free of
tractions. The geometry is shown in Fig.l. Omitting, here and in the
sequel, the factor exp(-iWt), where W is the circular frequency, the

incident wave is represented by

T

Wi e exp(lkLB.g) (2)

In Eq.(2), we have kL = w/cL, where c. is the velocity of longitudinal

L

waves : = [(\+2u)/o}%, and p is a unit vector which defines both the

i ;
direction of propagation and of displacement. 1In terms of the angles shown
in Fig.l we have
(pl,pz,p3) = (smq;L coseL, 51n¢L 31n¢L, cos¢L) (3)
The geometrical optics part of the diffracted field has been worked

out in a paper by Achenbach and Gautesen [67]. The results may be written

in the form

~

By = exp(ikpyx) W (x),%,) )
where
Yoo S3:%g) = Kip, HCEG) £ BCER 20 & By, Rl@H0y-2) )
where H( ) is the Heaviside step function. The relevant angles are
defined by
¢y, €OS@p = ¢ cosgy (6)
cL sm¢T coseT = cT sing, coseL Ly

L
In these relations ¢r = (w/0)? is the velocity of transverse waves.

The terms in Eq.(5) are
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Einc e exp[ikL(p1x1+p2x2)] ®)
r L B S

W, =R p exp[lkL(p1x1+p2x2)] (€]
= el S

Wy = Ry d explik,(p)%,+p,%,) ] (10)

where RL and RT are the usual reflection coefficients for the reflection

of a plane longitudinal wave which is incident on a stress-free surface
under an angle @y with the normal,and kT = w/cT. We have
: : 2 2
sin2g 31n2¢2 (cL/cT) cos 2¢,

. ; o
31n2@0 s1n2¢2+(cL/cT) cos”2¢, |

3 2(cL/cT) cos2gp, sinZ@o
R, = 5 5 (12)
51n2¢0 81n¢T+(cL/cT) cos 2¢T

The unit vectors appearing in Eqs.(8) - (10) are

L Lok o1
P (pl,Pz,p3) = (pl,-pz,p3) (13)

~

E = (sin¢T coseT, - sin¢T sineT, cos¢T) (14)

d=pT

~
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Now let us consider an incident longitudinal wave whose surfaces
of constant phase are arbitrary but smooth. The wave is incident on a
stress free crack of arbitrary shape, whose edge is a smooth curve. The
geometry is shown in Fig.2. We consider a point O on the edge, and we
define an orthonormal coordinate system (xl,xz,s). Here s is arc length
along the edge, with positive direction such that the propagation vector
i of the incident wave makes an acute angle, @L(s), with the tangent to the

edge. The positive x, axis is in the crack surface, and in the direction

1

of the principal normal to the edge. The xz-axis is in the direction of

the binormal to the edge, and such that the coordinates (xl,xz,s) form a

right-hand coordinate system. At point O the incident wave may be represented by
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Yine = A(xl,xz,s) v exp[ikLS(xl’xz,s)] (16)
where S(xl,xz,s) is the phase function which defines surfaces of constant
phase or wavefronts. The rays are normal to the wavefronts. At point O
the direction of the ray is defined by the propagation vector B(s), where

g(s) = Vs(0,0,s) = (sianL coseL, sin¢L sineL, cos¢L) (17)
Thus eL is the angle with the Xy axis of the projection of B on the
(xl,xz)-plane. It is noted that the definition of B(S) given by Eq. (17)
is completely analogous to Eq.(3), with the understanding that all
quantities now are functions of the arc length s. Considering some
point s on the edge, it follows that the phase S0 at point s can be
expressed as
$(0,0,s) = §(0,0,8) + ‘j“scosiqsL(s)]ds (18)

S

So(s)

i

For small X1 and Xy the geometrical optics part of the diffracted
field corresponding to the incideént field given by Eq. (16) can now
readily be constructed. We find

Bgo(xl’XZ’S) = Ao(s) expfikLSo(s)? Ego(xl,xz) + o(1l) (19)
where wgo is defined by Eq.(5). The o(l) term in Eq.(1l9) contains
the effect of curvature of the wavefront at the edge. Also

A (s) = A(0,0,s) (20)
The expression given by Eq.(19) is taken as the outer solution in a
matching of two solutions.

Examination of the geometrical optics part of the displacement field,

Eq.(19), motivates the following choice of the displacement in a small

region near the edge (the inner solution)




-1
= I's
Uis(V12Yp8) = explik;S (s)][v(y,,v,,8) + 0(k; )] (21)
where the inner variables y; are given by

v, =k i= 1.2 (22)

36,
2t T L 2

"

The choice of the stretching factor kL is based on the requirement that

the s-derivatives of the inner solution should be of the same order of

magnitude as the yi-derivatives.

In the coordinate system (yl,yz,s), the metrics are h1 = h2 = k;l, |

and h3 — L O(k;l). We remark that the curvature of the edge is contained
! -1 y : ; ! z
in the O(kL ) term in the.metrlc h3. With j,k = 1,2 and implying the

summation convention.the elastodynamic displacement equations of motion to

leading order in kL become upon substitution of (21)

2 . 2 : 2 g
kL ij,kk+(CL/CT) (Vk,kj+ i V3,j cosdy + vj) - vj cos ¢L]+O(kL) =0 (23)
2 2 2 2
% - =
kL Lv3,kk+(CL/cT) (i Vk,k COS¢L+ v, sin ¢L) vy cos ¢L]+0(kL) 0 (24)

On the surfaces of the crack, the conditions of vanishing surface tractions
yield
r . i T =
kL ) (Vk’k + i vy cos¢L) 6j2 + n (Vj,2 + V2,j)4 + 0(1) 0 (25)
Ity : =
kL (e (V3’2 + i v, cos¢L)] + 0(1) 0 (26)

Equation (21) defines the inner solution

The matching of the inner and outer solutions is carried out on an

. 2 _ ,~3/4 ek .
overlap region for which X, = kL €, and ¥y = kLei’ where €; satisfy

}’.
the requirement 0 < (ai+e§)‘ < o . The coefficients -3/4 is fairly
arbitrary, except that its absolute value should be between 0.5 and 1. The

matching condition is

‘ -3/4 -3/4
‘ Sy & K

where Ego and u,  are defined by Eqs.(19) and (21), respectively.

608) = 4, (che kley,8) ~o(D) 27)
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Equation (27) holds in the overlap regions, except on the boundary of the

shadow region, and the boundary of the region of reflected rays. We
remark that the diffracted field, which is discussed in detail in Ref.f{67,
enters the matching condition in subsequent terms, but not in the terms
of the order that are considered here.

Let us now return to the diffraction of a plane wave of the form
given by Eq.(2), by a semi-infinite crack. The total displacement field

for this problem depends on x, only through the factor exp(ikLp3x3). Thus

3

this displacement field may be represented by an expression of the form

W(xp,%y,%5) = exp(ikppyx) WX, ,X,) (28)
It can now be verified that

V(s ¥y8) = A (s) Wiy /k;,y,/k ) (29)
satisfies the displacement equations of motion (23) and (24) as well as
the boundary conditions (25) and (26) exactly to the order indicated.
Moreover, with Ao(s) defined by Eq.(20), it is found that the matching
condition (27) is satisfied to the order indicated, since for ¥ = kzci,

-3/4 -3/4 : -3/4 -3/4

E(kL el’kL sz) asymptotically equals ygo(kL €1 kL 32). On the
basis of these observations, Eq.(21) then yields for the inner solution

SN =il
gis(xl,xz,s) A,Ao(s) exptlkLSO(s)] H(xl,xz) + 0(“L ) (30)

This result implies that the stress intensity factor at a point s on the
edge is equal to the field of the incident ray at this point, times the

stress intensity factor divided by the phase exp(ik ) for a plane wave

1P3%3

of unit amplitude which is incident with the same propagation vector p.

I Elastodynamic Stress Intensity Factors

Elastodynamic stress intensity factors for a straight-edged semi-

infinite crack were analyzed by Achenbach and Gautesen [77. The diffraction

of a plane longitudinal wave of the form




-
2(1) =P exp(ikLE.§) (31) |
which is incident under an arbitrary angle with the edge of the crack,
generates Mode I, II and III stress intensity factors. An incident trans-
3 verse wave of the form
2(“‘) = g(m) exp(ik p.x) (32) ]
generally also generates stress intensity factors in all three fracture
modes. In Eq. (32) the index m can assume the values m = 2 and m = 3,
which refer, respectively, to vertical and horizontal polarization of the 1
incident wave, relative to the plane spanned by 52 and p, see Big, .t Fhus,

PO S 5
€3y _ : :
d = P X Sy /| P 1 | (34)
For each incident field u(l) and u(m>, m = 2,3, the three stress iutensity
factors may be represented by a vector gém). For an incident longitudinal

(1)

wave the components of KO

are presented in Ref.[7]. The stress intensity
factors generated by incident transverse waves can be computed by the

methods of Ref.[7]. TFor convenience, the components of

TR
K = 50 exp ( lkLP3X3) (35)
(m) _ _ (m) : -
K = Eo exp(-lkTp3x3) 5 m.= 253 (36)

are listed in Appendix A. Here K(m) K(m), K(m) are the Mode I, II and
~1 > N2 ~3
ITII stress intensity factors, respectively.
In this paper we are interested in the stress intensity factors

i generated at the edge of a curved crack, see Fig.2 by an incident wave

of the form

2 u = A(X,,X,,8) e<m)(s) expfik(m)s(x s%n38) ] (37)
where m = 1 signifies a longitudinal wave, when

2 signifies a transverse wave with vertical polarization

while m

B

T2
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and m 3 refers to a transverse wave with horizontal palariz
3) 55 (&5
o gt ) ) I (o
~ I
t v shown in the previous section that for an incident wave of
arbitrarv shape the stress intensity factor at a point s on crack
edge is equal to the field of the incident ray at this point multi-

plied by the stress intensity factor for a corresponding plane wave

(m)
Py¥qle

s _(m) .y (m) 4
E = ¥ AO e, exp (ik SO) (41)

divided by the phase exp(ik Thus

(m

where AU g)‘) exp(ik(m)so) is the field of the incident ray at a point

on the edge, and K is a matrix, whose components are

s 2).(2) , (3).(3)
hjk Kj Pl + Kj dk + Kj dk (42)
The coefficients K§m) are defined by Eqs.(35) and (36).

Several specific examples of elastodynamic stress intensity factors

generated by body waves are discussed in Section 5.

4. Surface Waves

The results of the preceding sections can easily be extended to the
computation of elastodynamic stress intensity factors which are generated
at the diffraction of Rayleigh surface waves by a crack edge. In this
paper we consider stress intensity factors due to surface waves which are
incident on an edge via both faces of a crack. Then, it is convenient
to distinguish between symmetric and antisymmetric motions relative to
the plane of the crack. Only the case of symmetric motions is considered
in detail, but the corresponding results for antisymmetric motions can
be obtained analogously.

Following Eqs.(3.12) and (3.13) of Ref.[87 with appropriate minor

adjustments in notation, the time-reduced displacements for the incident

e TN ™ WS TR
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surface wave may be written in the forms

B _ o 2,2, -walx | 2,2, =tbhx. |
= f = < / T /
u, ra ZSR/sT) e 2 + Z(SR,ST) e 2] stgn(xz) (43)
av
B _ 1. 2 2. -palx, | 2. -whlx 1. @2 ;
uj = wa[(ZsR-sT) e 2" - Z(ab/sT) e 24 }Xj (44)
where j = 1,3, and
i . : =
V, = exp{iwl-s (x sing + x,cosq.) ]} (45)
B O
a = (sR SL) . b = (SR-ST) (46a,b)
Thus, in the geometry shown in Fig.l, the surface wave is incident
on the edge under an angle 91 with the edge.
The diffraction of surface waves has been discussed in some detail
in Refs. 87 and [97]. If we denote the time reduced displacement in the
xz-direction on the faces of the crack by U;(xl,xz), the exponential
Fourier transform with respect to X of U; is given by Eq. (44) of
Ref.[8]. Here we slightly rewrite this expression in the form
e =- =2 L - . ) Bt indy)  -sumx, (47)
= s - T -
2 iw (g sRsmei+ i0 gt SRsn“i+ i0; E(g)
In Eq.(47)
Pl o .
| = sgpeose; (48)
+ a2 L2k
E(E) = K (g, M/ [(s-1")"+£]" (49)

where K+(g,n) is defined by Eq.(4.6) of Ref.[87. The incident and
reflected surface waves correspond to the contributions of the poles
in inversion integrals. Thus, the contribution at g = sRsinei-iO just
reproduces the incident wave given by Eq. (43), while the pole at

E= -sRsinei~iO gives the reflected surface wave. It is easily veri-

fied that the reflection coefficient can be written as

10
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v st B Nt = e

0 U s gl :
RR E(SRSLnei)/E( SRSLnei)
By virtue of asymptotically valid relations between a Fourier

transform as |A&v| — « and the inverse transform as x, ~ 0, the

following expression for the Mode I stress intensity factor has been
derived as Eq.(66) of Ref.[77:
R _ ,3/2,3/2 i/

b . ~f-
5 lim Uz(g)

€ - o

2,2 i)
K J(l-SL/ST) e

(50)

(51)

By substituting Eq.(47) into Eq.(51), we obtain Kg = KRexp(-ﬂsﬂx3), where

R _ _,5/2% -im/4

202
K" = w? - s sing, sing,
wea (1 sL/sT) RSin6; E(spsing,) e

An extension to incident surface waves with curved wavefronts,
which are incident on curved crack edges, is now completely analogous
to the case of body waves. Suppose the time reduced incident field is
of the form

H ek A(xl,s) exp{-iwsR S(xl,s)]
where the displacement is positive on the upper face. The result then

simply states that the stress intensity factor at a point on the edge

is

~
1

R .
A xpl-iw s 1
OK exp | ~iu squr

>
]

A(O,8) , S_=5(0,5)
Surface waves of the type given by Eq.(53) can be generated by direct
application of disturbances to the faces of the crack, as well as by

diffraction processes. Examples of both cases are given in the next

section.

(52)

(53)

(54)

(55a,b)
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5. Examples

In this section several applications of Eqs.(41) and (54) are pre-
sented. We will consider examples with curved as well as with plane
wavefronts, and with curved as well as with straight crack edges. Both
steady-state time harmonic and impact excitations will be considered.

Anti-Plane Motions

The first example is concerned with the stress intensity factor at the
tip of a semi-infinite crack due to an anti-plane line load of P force
units per unit length and time variation exp(-iwt), which is applied
parallel to the crack as shown in Fig.3. This elastodynamic problem is
two-dimensional, and the time reduced anti-plane displacement u3(xl,x2)
is governcd by

2 2

Vg + kTu3 ==t (R ) sl = EP) (56)

The solution to Eq.(56) is

i E ()
u3(r,rp) = (kT\E EP[) (57)
For large frequencies we may write
.l"_ .E ‘_g_ —--]:._;é = l_TT
u3(r’rP o 4 1 \T’k r-EP\,, exp L ]‘kT’r EP‘ 4 | (58)

Equation (58) represents the incident field.
For an incident plane horizontally polarized transverse wave of unit
amplitude, the elastodynamic stress intensity factor was presented by
Eq. (90) of Ref.[7] as
-im/4

(2 l3Xy o 5
kKo )3 ZukT e

sin(eT/Z) (59)
where eT is the angle of incidence. For the problem at hand we have

= = - 1 - | i 5 -
P, = cosg ~(X1)0 (xl)PJ/‘Eo Ip!+ Equation (59) can then be re

written as




.
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;K

. = kgt (- pp? 8T (60)

Equation (41), together with Egs.(58) and (60) then yields for the line

load problem

L e QR P N 1
k=2 ¥ (7 or]) Gorn) oLtk o5 oL

This result agrees with the near-tip field computed from the asymptotic
expansion of the exact solution of an analogous problem, see Ref.[107,
p. 329, Eq.(8.74).
For the second example we consider a crack of finite length 2/,
subjected to a plane horizontally polarized transverse wave of the form
(u3)inc = A exp[ﬂx(sTxlcoseT + sszsineT = e (62)
The geometry is shown in Fig.4. To compute the Mode III elasto-

dynamic stress intensity factor at high values of Ws_j, we trace an

™
incident ray as it undergoes diffractions at the two crack tips. The
primary diffraction produces diffracted rays on the faces of the crack,
whose fields for large frequency and/or distance are easily computed, as
shown in Ref.[67]. These fields are subsequently diffracted at the other
crack tip, thus producing another set of rays on the crack faces. This
process continues, and one can visualize systems of rays travelling back
and forth between the two crack tips. Since the fields decay as (wsTf)-%,
it is only necessary to consider a few secondary diffractions. In fact,
in the computations presented here, only one secondary diffraction is
included.

The primary diffracteu field of the incident ray at 01, see Fig.4,

is the diffracted field for a semi-infinite crack. This field was dis-

cussed in Ref.[6]. On the upper surface of the crack (i.e., at g8 = 0)
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the exponential Fourier transform of the anti-plane displacement is
given by Eq.(89) of Ref.[77] as

ﬁ; = (ZRT)% A iiw3/2(§+sTcoseT)(§+ST)%t-lsin(eT/2) v

Analogously to the results given by Eqs.(65),(70) and (71) of Ref.(67,
the far field (or high frequency) inversion at g = 0 can be computed

as

T -% it (s x,-t) e
J. = 5 T 4
L3 (Kl) DT A e 1 (6+)

Y . N +
where the diffraction coefficient DT is

£ a N 1 iv/4 i
= Sin(GT/Z) e L 0 <@ < W (65)

T

The primary diffracred field at 0, is obtained by taking into account

2

that the angle of incidence measured from the shadow side of the crack

is w-eT, as shown in Fig.4. For the primary diffraction we can then

write
- 5 T i = g
DT = (eniidp) P b A D Cep R inE) (66)
3} 1 it
where
ety I Y% 1 im/4 0= B =T
DT o \ZstT cos(eT/Z) 5 2 g el

The corresponding displacements on the lower crack faces are equal in
magnitude but opposite in sign to Eqs.(64) and (66).

For the primary incident ray the stress intensity factor at X; < 0
is given by Eq.(59), which is valid in the range 0 < gT < T, For

eT = 77, the waves approach the crack tip from the side of the
crack face. Then, not only the incident wave but also the reflected wave

is incident on the crack tip. For this system of incident and reflected

waves, the displacements on the crack face are actually twice as large

T L T PN T T g \“
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as would correspond to the incident wave only., This observation implies
that for an incident wave which is given as a surface displacement on
the lower face of the crack, the elastodynamic stress intensity factor
is half the value given by Eq.(59) for By = 7o

On the basis of the foregoing observation, the stress intensity
factor at X = 0 due to the primary diffracted wave generated on the
lower crack face (which is minus the expression given by Eq.(66)),then
follows by setting GT = 1 in Eq.(59) and substituting the appropriate

amplitude, as

_ _ . % -in/4 -5 - 2iws £
KIII = ukT e (2g) DT A e T (68)

Multiplying this result by 2, to account for the diffracted wave on
the upper face, which is given by Eq.(66), and adding the result to the
primary stress intensity factor given by Eq.(59), we obtain at
s e 2uAk§!e'i"/“[sin(eT/2) 2 (2/&)'3’51);T e2Wsgd ) (68)
It is easily shown that the incident displacement wave given by
Eq.(62) corresponds to a stress wave of magnitude To’ where Fo uAkT.

Let us now consider the special case of normal incidence, when eT = n/2.

Then we have

¥, /2% ~im/b . /1 N\k _1(2k f4n/4)
Erer/ T | ~ kg e fl-lm‘mﬂ" Ty . ol
which can be further simplified to
- % /_2_‘!5{' e ‘/ 18 ;5 1
\KIII/'OE { A_tkTﬁ) 1 \WkT@ﬁ cos(Zsz + /b)) (70)

This stress intensity factor was computed by other methods by Mal [117.

The results are compared in Fig.5. It is noted that the agreement is
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excellent for kTﬂ o BT

In-Plane Motions

As an example of the much more complicated class of in~plane

]

problems we will consider the elastodynamic stress intensity factor
generated by the diffraction of a longitudinal wave by a crack of
length 2g.
Similar to the anti-plane problem the elastodynamic stress intensity

factor is computed by tracing rays as they are diffracted by the two
crack tips. There are, however, some interesting and important differences
with the case of anti-plane motions. The most important difference is
related to the significance of Rayleigh surface waves in the primary and
secondary diffractions. The primary diffraction generates not only rays
of longitudinal and transverse motion, but also surface motions near the
faces of the crack. It is a general feature of in-plane problems that
bulk waves decay as (distance)-%, while surface waves do not decay at
all. Thus, on the faces of the crack, the surface motions tend to pre-
dominate the longitudinal and transverse motions due to the body waves.
This means that it is necessary to consider stress intensity factors due :
to surface waves, which were discussed in Section 4. Since there is no
spatial decay, except for the fact that the reflection coefficient RR
given by Eq.(50) is smaller than unity, it is necessary to sum the

i influence of all secondary diffractions of the surfaces waves. Here
we present the details for the case of normal incidence.

The Rayleigh surface wave generated by the primary diffraction of

the incident ray follows from Eq.(46) of Ref.[6]. For the problem at |

1 hand we have
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(u2) = A‘expfﬂu(ssz-t)] (71)

inc
Thus Py = Py = O, Py = 1. The exponential Fourier transform of the

sur face displacement for x| = 0 then follows from Eq.(46) of Ref.[6]

as
. 2, % 5
o isy/sy s L o
/2 Z 23 p a 4R b
2§u(sT-sL) 2R ()
The surface wave contribution comes from the pole at # = - Sp*
i | We find
‘ B = B A o (SpEy ~HE) (73)
| 2 R
L where
Spr Belleg 5 4

D, = - i—% | (74)
5 SR “Z(l-silsi)‘ K+(-sR)

The Mode I stress intensity factor due to the primary diffraction

immediately follows from Eq.(41) by setting P, = Py = 0, P, = 1. We

find
Bl (L)
B KI = K1 A (75)
where Kgl) can be obtained either as a special case of Eq.(A.2), or

by employing Eq.(51) together with Eq.(72). The result is
kD = 2pacel/el-nTs ) o I4 (76)
The secondary diffractions at point 01 are produced by Rayleigh sur-
face waves. The phases of subsequent contributions as a ray travels
d back and forth between the crack tips increase with ZwSRV with each
; diffraction, i.e., they are exp(ZiwsRﬁ), exp(&ﬁ»sRﬂ), etc. The
magnitudes of subsequent contributions are reduced by multiplication

by the reflection factor Rp given by Eq.(50). Thus, for the contribu-

tions of the Rayleigh waves to the stress intensity factors, we have
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K? = KRA, where
R _ R, 2iws ? 4iws £ 2 6iws_F L
K™ = D K [e R +Rpe RU4Rpe R+ 77
R . ;
where KO is defined by Eq.(52). Equation can be written in closed
form as
R
ot
KR } DR KO exp(ulwsRQ) o
- 2 Tipng .
1 RR pr(_l&bR )
The total stress intensity factor is
B R =
KI = KI #* KI (0%

. 2 .
Numerical results were worked out for s /sL = 3, which corresponds

2
ik
to a material with a Poisson's retain y = 0.25. For that case we have

+ +
K (sR) = 0.91116 and K (-sR) = 1.9009. The absolute value of KI is
compared in Fig.5 with numerical results obtained by Mal [117. It

is noted that the agreement is very good for kTZ SO

Normal Point Loa's on a Semi-Infinite Crack

As an example of the computation of elastodynamic stress intensity
factors generated by surface waves only, we consider the case that the

faces of a semi-infinite crack are subjected to equal and opposite time-

harmonic point loads applied at Xp T X, Xy = i 0 , and Xy = 0 , see
Fig.6. The boundary conditions at X, = 0 then are
Tgg = © B #lspox Jolz,) expl-Lic) (80)
S G

Motions generated by a normal point load on a half-space have been studied

2

in detail. It is well known that for ws_r > > 1, where rz = (xl-xo)2+x3,

R
the predominant component of the surface displacement is the Rayleigh
surface wave. The normal surface displacement is given by Eq.(2-120) of

Ref.[127]. Taking into account that in the present paper we use a
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negative time exponent, exp(-iWwt), the time-reduced displacement can be
written as

i(ws'r+ m/4)

U, ~ A(r) e E (82)
where
w%s %N (s2 s %
RPN Sl b B0 (83)
[ Z“r, R’ (sR)

In Eq.(83), R(g) is the Rayleigh function
2
R(O) = 2¢2-s2)% + a2 D¥sE- A¥ (84)
and the prime denotes the derivative with respect to (.
In the context of the discussion of Section 4, and referring to

Fig. 6, we can now define at a point X4 on the edge

+ = - 2
sing, = xo/r ; cosg, = x3/r i T o= (x + x )% (85)

By comparing Eqs. (53) and (82) we can now immediately identify A(xl,s)
and S(xl,s). By virtue of Eq. (54) the stress intensity factor may

then be written

e iy
K = A(r) K, exp[nu(er + 1/4)) (86)

This stress intensity factor was also computed in Ref.[7] by a direct
asymptotic evaluation of integrals in an expression for the exact

solution. It can be shown that Eq. (86) agrees with Eq.(104) of Ref.[77.

Penny-Shaped Cracks

For the final example we consider a penny-shaped crack under the
influence of an axially symmetric torsional wave. In cylindrical co-
ordinates (r,g,xz), axially symmetric torsional wave motions are defined
by a single displacement component ue(r,e,xz) which is independent of the
angular variable ¢. The only non-zero stress components are T and T

29 re
In the problem considered here the axis of symmetry is normal to the plane

SR WK, e s e B A A R
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of the crack, and passes through the center of the penny-shaped crack.

The geometry is shown in Fig.7. The incident stress wave is of the form
Au

SRR PRGN - -
2g = B Bx3 B H(cTt x2) (87)
Thus, this is a transient stress wave, which strikes the crack at time
t = 0. Writing the near-tip stress field in the form
Tyo 1 . 52551; (88)
® @emE (r-a)?
the first term in an expansion over time follows from the results of
Kennedy and Achenbach [13, Eq.(3.11)7 as
- 2 % -
K3(t) = 2‘0(2cTt/w) (1 +0(t)] (89)
Now we will approach this problem with the theory presented in this
paper. The incident wave (ue)inc can be expressed as
(b i S
(33,0 Paen S & | = expliw(x,/c -t) ldw (90)
¢’ inc mpa ) 2 : L e
e}

Treating the quantity (cTtor,’ZTr uawz)exp(ﬂnxz/cT) as the incident wave,
it is observed that this wave is equivalent to an incident plane hori-
zontally polarized time-harmonic wave, which is normally incident on the
crack, i.e., P = 0. TIt then follows by employing FEgs.(4l) and (60) that

rown* 1s ST

3— V\C/

5 (C28)
T 21T pw

K

Now we can introduce the time factor exp(~iwt) in Eq.(91) and substitute

the result in the Fourier superposition integral. Since
ll‘T - _' nn
T2t G L mey¥ G4 (92)

- .m
the evaluation of the superposition integral yields Eq.(89), and the
results obtained by the method of this paper agree with those of Ref.[1371.

This example also confirms the expected result that the large frequency




o

!
L3
"

approximation in the frequency domain leads to a small time approximation
in the time domain. In this context small time means small after arrival
of the wavefront which separates the disturbed and the undisturbed regions
of the solid.
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APPENDIX A

ELASTODYNAMIC STRESS INTENSITY FACTORS FOR THE INCIDENCE
OF PLANE WAVES ON A SEMI-INFINITE CRACK

In this Appendix we have listed the components of K(l) and K(m)

~

3

m = 2,3, which are defined by Egs. (35) and (36). For economy of pre-

sentation the slownesses By B 1,2,3, are introduced as

s, = 1/cL > 8y = l/cT and Sq = l/cR ,

where R is the velocity of Rayleigh waves. 1In the following ex-
pressions the index (j) can assume the values (1) (incident longitudinal
wave) and (2) (incident vertically polarized transverse wave). The
index (3) refers to an incident horizontally polarized transverse wave.

The stress intensity factors are:

Mode I: g (3

1 =P
Mode II: K(j) =D .0 1 +s,Q,.e "”ﬁzy
' 2 2§72 2733
: -id . .
mode 112: ¥ w tam g 0.6 . & 7
’ 3 3212303123
Mode T: K§3) =0
-i8
. 3 22
Mode II: K2 = SZQAQS e
-id
) Sty 32
Mode III: K,3 = QA~ = 1s3Q5C22 €
In these expressions:
B -in/4s %/ -1
= s, 2ws, i ng
Qlj ij wsl‘ e gSlnm1j+Sjpl/slﬂ \SBSlnu3j+Sjp1 /Clj
¥ -in/4 ah %
il W - 2 2
N h?j;? Sy e 1 Py ‘SLnﬁ2j+sjpl/sz
2j ; / . :
. P+ ( A ,
C1]\p3 1p1 \5351“'3j+sjp1;
2is.p -id, .~ -2id ; A 1 TR
Q,, = - 23, 2jl g2, 2} 4 28%(1-8 /sz}Cz.e 3]
3 Ty L A Sl Wt B it 3
S i ¥

23

(A.la,b,c)

(A.2)

CAL.3)

(A.G)

(&.5)

(A.6)

(A.7)
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D= Sz/s -2+ 2p

11 200 2

- 2%
Bia @ AR B By T S
f"\ -
cosh . = s P3/Sk W e
+
g = K -
k_] \:_]k ’ Sjp3 )

K' (2,7) = exp f(g,m)/7

H D21 = 2p2
¥ AV
pa = {1=emg fitne, )
1,2,3
k =1,2

rdp & = L5
f(g8,m) = " arctan F(t,m) | (t + 5) dt
ql :
7 N N 7 9 5
F(t,r) = S G RS yel-n?.¢?
b £\ 1; N2 / \ 2
2 2%
, = 1§,=m
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Fig. 1 Propagation vector p of plane wave
incident on a crack with a straight
edge

Fig. 2 Local coordinate system for wave incident
on a crack with a curved edge
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Fig. 3 Time-harmonic anti-plane line
load and semi-infinite crack

Fig. &4 Plane horizontally polarized transverse
wave incident on a crack of length 27
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SH-wave: —— Ref.[11]
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Fig. 5

Ratios of elastodynamic and elastostatic
stress intensity factors versus 21 crack
length/wavelength for normal incidence
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Fig. 6 Point loads applied on crack faces
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Fig. 7 Penny-shaped crack
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